
Adv Comput Math
DOI 10.1007/s10444-008-9099-y

Regularized least square regression
with dependent samples

Hongwei Sun · Qiang Wu

Received: 14 September 2007 / Accepted: 11 August 2008
© Springer Science + Business Media, LLC 2008

Abstract In this paper we study the learning performance of regularized least
square regression with α-mixing and φ-mixing inputs. The capacity indepen-
dent error bounds and learning rates are derived by means of an integral
operator technique. Even for independent samples our learning rates improve
those in the literature. The results are sharp in the sense that when the mixing
conditions are strong enough the rates are shown to be close to or the same as
those for learning with independent samples. They also reveal interesting phe-
nomena of learning with dependent samples: (i) dependent samples contain
less information and lead to worse error bounds than independent samples;
(ii) the influence of the dependence between samples to the learning process
decreases as the smoothness of the target function increases.
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1 Introduction

Least square regression problem has a long history in machine learning and
statistics. In the machine learning terminology, this problem can be stated
as follows: Let X be a compact metric space (usually a subset of R

n) and
Y ⊂ R. Assume x ∈ X and y ∈ Y are random variables with their dependence
described by a joint probability measure ρ on X × Y. Here x is called the input
variable and y the output (or response) variable. The objective is the regression
function

fρ(x) = E(y|x) =
∫

Y
ydρ(y|x)

which describes how the output variable depends on the input variable. In
practice, we do not know the probability measure ρ and fρ is not directly
computable. Instead, we have in hand a set of samples z = {(xi, yi)}m

i=1 drawn
according to ρ and fρ should be learned from this set of samples.

In this paper, we study the regularized least square regression which, given
a Mercer kernel K, learns an empirical regressor by

fz,γ = arg min
f∈HK

{
1

m

m∑
i=1

( f (xi) − yi)
2 + γ ‖ f‖2

K

}
, (1.1)

where HK is the reproducing kernel Hilbert space (RKHS) associated to the
kernel K (for definitions and properties see [1]) and γ > 0 is a regularization
parameter. The resurgence of the kernel methods and the study of learning
theory from an approximation point of view [6] have motivated a lot of re-
search on this RKHS based regularization scheme [9, 13, 14, 17] (Sun and Wu,
unpublished manuscript). These works have focused on independent samples.
However, independence is a restrictive assumption and may be violated in
many real data analysis. In recent years the learning with dependent samples
starts to attract attentions [10, 11, 15, 16, 18] (Smale and Zhou, unpublished
manuscript). The aim of this paper is to study the learning performance of
(1.1) for dependent samples.

According to no free lunch principle, it is necessary to make some assump-
tions that naturally measure the dependence between the samples. In the
literature, several different notions have been considered in the regression
setting. Examples include the mixing sequences [11, 16] and samples sampling
from Markov chain distributions generated by dynamic operators (Smale and
Zhou, unpublished manuscript). In this paper we follow [11, 16] and adopt the
notion of mixing condition due to its ubiquitousness in stationary stochastic



Least squares regression

processes. Our main results will be the capacity independent error bounds and
learning rates for two classes of mixing sequences. The results coincide with the
intuition that the dependent data contain less information than independent
data by worse error bounds and learning rates. Moreover, they show that the
influence of the dependence will be decreased if the target regression function
is smoother. It can even disappear if the function is smooth enough, say, when
fρ ∈ HK. The details are given in Section 2.

The results will be proved in Sections 4–6. We use the integral operator
technique introduced in [14]. Recall the integral operator can be used to
estimate both the estimation error and the approximation error. We will
show how the integral operator techniques can be extended from independent
samples to dependent samples. Moreover, our analysis is refined in the sense
that it yields a sharper error bound for the independent samples and improves
the learning rates in [14]. As for the dependent samples, our results are also
sharp in the sense that (i) when the mixing conditions become strong and the
samples tend to be “nearly” independent the learning rates can be arbitrarily
close to or even the same as those for the independent samples. (ii) They may
even outperform some existing capacity dependent results (e.g. [11, 18]) while
this is impossible for independent samples.

2 Main results

In this section, we state our main results and discuss their relations to the ex-
isting works. For this purpose, we first introduce some notations and concepts.

Let ρX denote the marginal distribution of ρ on X. Throughout this paper
we assume fρ ∈ L2

ρX
(X) and |y| ≤ M almost surely for some constant M > 0.

A Mercer kernel K is a continuous, symmetric, positive definite function on
X × X. Obviously there holds

κ := sup
x∈X

√
K(x, x) < ∞.

Recall the reproducing property of the RKHS is given by f (x) = 〈 f, Kx〉
implying that ‖ f‖∞ ≤ κ‖ f‖K.

The main purpose of this paper is to study the learning performance of the
algorithm (1.1) with dependent samples. We assume the sample sequence zi =
(xi, yi), i ≥ 1 comes from a strictly stationary process and the dependence will
be measured by the strongly mixing condition and uniformly mixing condition.

For two σ -fields J and D, define the α-coefficient as

α(J ,D) = sup
A∈J ,B∈D

|P(A ∩ B) − P(A)P(B)|

and φ-coefficient

φ(J ,D) = sup
A∈J ,B∈D

|P(A|B) − P(A)|.
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Given a sequence of samples {zi}∞i=1, denote by Mb
a the σ -field generated

by random variables za, za+1, · · · , zb . The strongly mixing condition and uni-
formly mixing condition are defined as follows.

Definition 2.1 A set of random sequence zi, i ≥ 1, is said to satisfy a strongly
mixing condition (or α-mixing condition) if

αi = sup
k≥1

α
(
Mk

1,M∞
k+i

) −→ 0, as i → ∞.

It satisfies a uniformly mixing condition (or φ-mixing condition) if

φi = sup
k≥1

φ
(
Mk

1,M∞
k+i

) −→ 0, as i → ∞.

Note that strongly mixing condition is weaker than φ-mixing condition.
Many random processes satisfy the strongly mixing condition, for example,
the stationary Markov process which is uniformly pure non-deterministic,
the stationary Gaussian sequence with a continuous spectral density that is
bounded away from 0, certain ARMA processes, and some aperiodic Harris-
recurrent Markov processes; see [2, 11] and the references therein. For the
latter two examples, the strongly mixing coefficients even decay exponentially
fast, i.e., satisfying a so called exponentially strongly mixing condition. For
examples of uniformly mixing sequences see [11]. As a special and trivial
example, a sequence of identically and independently distributed samples
satisfies both conditions with αi = φi = 0.

In regression learning, we intend to study the approximation ability of fz,γ

to the true regression function fρ . The main results of this paper will be the
error bounds and learning rates when the samples (xi, yi) are from a strictly
stationary process satisfying a strongly mixing condition or a uniformly mixing
condition.

Let LK be the integral operator on L2
ρX

(X) defined by

LK( f )(x) =
∫

X
K(x, t) f (t)dρX(t). (2.1)

Denote the norm in L2
ρX

(X) as ‖ f‖ρX . Our main results can be stated as
follows.

Theorem 2.2 If the sample sequence (xi, yi), i = 1, . . . , m satisfies an
α-mixing condition and L−r

K fρ ∈ L2
ρX

(X) with 0 < r ≤ 1, then for any 0<δ≤∞
and 0 < η < 1, with confidence 1 − η, ‖ fz,γ − fρ‖ρX is bounded by

γ r‖L−r
K fρ‖ρX + C1

η

⎛
⎝ 1√

mγ
+ 1

mγ
3
2

√√√√1 +
m−1∑
i=1

αi

⎞
⎠(

1 + γ
(2r−1)δ

2(2+δ)

)√√√√1 +
m−1∑
i=1

α
δ

2+δ

i

where C1 is a constant independent of m, γ, η and δ.
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Theorem 2.3 If the sample sequence (xi, yi), i = 1, . . . , m satisfies a
φ-mixing condition and L−r

K fρ ∈ L2
ρX

(X) with 0<r≤1, then for any 0 < η < 1,
with confidence 1 − η

‖ fz,γ − fρ‖ρX ≤γ r‖L−r
K fρ‖ρX + C2

η

⎛
⎝ 1√

mγ
+ 1

mγ
3
2

√√√√1+
m−1∑
i=1

φ
1
2
i

⎞
⎠

√√√√1+
m−1∑
i=1

φ
1
2
i

where C2 is a constant independent of m, γ and η.

In case of independent samples, we have αi = φi = 0. The following bound
is an immediate corollary of either result above.

Corollary 2.4 With independent samples and under the assumption L−r
K fρ ∈

L2
ρX

(X) with 0 < r ≤ 1, with probability 1 − η there holds

‖ fz,γ − fρ‖ρX ≤ γ r‖L−r
K fρ‖ρX + C3

η

(
1√
mγ

+ 1

mγ
3
2

)
.

It can be easily checked that this bound leads to the error rate of order
O(m−2r/(3+2r)) if 0 < r < 1/2 and O(m−r/(1+2r)) if 1/2 ≤ r ≤ 1. In case of 0 <

r ≤ 1/2, it is better than that given by [13, Corollary 5].1

Theorems 2.2 and 2.3 will be proven in next several sections. Before going
into the technical proofs, we deduce some learning rates of algorithm (1.1) and
discuss their relations to some existing works.

Corollary 2.5 Under the assumptions of Theorem 2.2, if the α-mixing coeffi-
cients satisfy a polynomial decay, i.e., αi ≤ ai−t for some a > 0 and t > 0, then
by taking γ = m−θ we have

‖ fz,γ − fρ‖ρX = O

((
1

m

)θr

log m

)
. (2.2)

where θ is given by

θ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2t
(2r+3)t+1−2r if 0 < r < 1/2 and t ≥ 1;
t
2 if 0 < r < 1/2 and t < 1;

1
1+2r if 1/2 ≤ r ≤ 1 and t ≥ 1;

t
1+2r if 1/2 ≤ r ≤ 1 and t < 1.

1The rate of order O(m−r/(1+2r)) for the case 0 < r < 1/2 can be achieved by means of leave one
out analysis [19]. There is a gap between the rate in [13] and this rate. Our result decreases this
gap but does not close it. People conjecture that integral operator technique with more careful
analysis can close this gap. No matter whether this is true or not, in our opinion, the power of
integral operator technique lies on its ability of analysis in HK or in case of r ≥ 1/2 and its easy
extension to dependent samples.
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The proof will be given in Section 6 where we show that the log term may
even be dropped in some cases. From these rates, we notice the following facts:

1. Stronger dependence between samples implies that they contain less in-
formation and hence lead to worse rates. This is a somewhat expected
property and our results do reflect it.

2. When the target function fρ becomes smoother (i.e., r becomes larger),
the influence of the dependence becomes weaker. When r ≤ 1/2 and t ≥ 1,
the relative gap between the rate indices for mixing sequence and for in-
dependent samples,

(
2r

2r+3 − 2r
(2r+3)+(1−2r)/t

)
/
(

2r
2r+3

) = (1−2r)/t
3+2r+(1−2r)/t , becomes

smaller as r increases. When r > 1/2 and t ≥ 1, we see the rate for mixing
sequences is even the same as that for independent samples.

3. Though from a rate analysis point of view, it seems the influence of
dependence is not so large, we should note that this is only asymptotically
true. For finite samples, the influence in fact depends on the mixing
coefficients as shown by comparing the bounds in Theorems 2.2 and 2.3
with the bound in Corollary 2.4.

A class of strongly mixing sequences with the exponentially decaying mixing
coefficients have caught attentions recently. In this case, our bounds give the
following rates:

Corollary 2.6 Under the assumptions of Theorem 2.2, if the α-mixing coeffi-
cients satisfy an exponential decay, i.e., there are a, b , c > 0 so that αi ≤ ae−cib ,

then

(i) if 0 < r < 1
2 , we take γ = m− 2

2r+3 and have

‖ fz,γ − fρ‖ρX = O
(

m− 2r
2r+3 (log m)

1
2b

)
; (2.3)

(ii) if 1
2 ≤ r ≤ 1, we take γ = m− 1

1+2r and have

‖ fz,γ − fρ‖ρX = O
(

m− r
2r+1

)
. (2.4)

In [11] the term “effective number of observations” was proposed for mixing
sequences in the sense that though we have in hand m observations, but
the information they contain is equivalent to that contained by only mα < m
independent samples. This implies that for an algorithm, if we have the rate of
O(m−τ ) for independent samples, we will have the rate O(m−τ

α ) for the mixing
sequences. In particular, for the exponentially strongly mixing sequence, it is
shown the “effective number of observations” is

mα =
⎢⎢⎢⎣m

⌈(
8m
c

)1/(1+b)
⌉−1

⎥⎥⎥⎦ = O
(
mb/(1+b)

)
.

By this observation, the capacity independent rate should be
O(m−2rb/(3+2r)(1+b)) by recalling the rate for independent samples is
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O(m−2r/(3+2r)). However, we notice that our rate is the same as that for
independent samples up to a log term. So we conjecture the “effective number
of observations” should actually be very close to O(m).

Recently Xu and Chen in [18] studied the learning rates for the exponen-
tially strongly mixing conditional samples based on the observations in [11] and
got the capacity dependent rate m− br

(b+1)(s+1) under the assumption of covering
number for the unit ball of HK decaying as

logN (η) ≤ C0η
−s, ∀η > 0

when 0 < r ≤ 1
2 . Their rate can be better than ours only when 2bs+2+2s−b

2b < r ≤
1
2 . It is a very small region. For a less smooth kernel, say, s ≥ 1, this is even
impossible. Recall the fact that the capacity independent results correspond to
the capacity dependent ones for the worst kernel case. We believe the result in
[18] is far from optimal and can be improved.

For the uniformly mixing sequences we only remarked that if φ
1/2
i is

summable to infinity the rate is the same as that for independent samples. We
omit the rate analysis in detail.

3 Preliminaries

In this section, we provide some technical lemmas that will be needed in the
proofs.

Our proofs will be based on the integral operator technique introduced
in [14]. The following lemma gives the key properties of the integral
operator (2.1).

Lemma 3.1 The integral operator LK has the following properties:

(1) LK is a positive compact operator from L2
ρX

(X) to L2
ρX

(X). Consequently,
it has a set of non-negative eigenvalues λ1 ≥ λ2 ≥ . . . ≥ 0 in descendent
order. Let ei be the eigenfunction corresponding to λi. Then {e1, e2, . . . }
is a complete orthonormal system of L2

ρX
.

(2) Denote 
 = {i : λi > 0}. Then {√λiei : i ∈ 
} forms an orthonormal basis
of HK. As a consequence, for each f ∈ HK, the closure of HK in L2

ρX
,

there holds

‖ f‖ρX = ‖L1/2
K f‖K.

Lemma 3.1 are well known properties of the integral operator LK. Its proof
can be founded in e.g. Sun and Wu (unpublished manuscript).

Our aim is to bound ‖ fz,γ − fρ‖ρX . We use the usual error decomposition
strategy. Define

fγ := arg min
f∈HK

{‖ f − fρ‖2
ρX

+ γ ‖ f‖2
K

}
. (3.1)
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Then we have

‖ fz,γ − fρ‖ρX ≤ ‖ fz,γ − fγ ‖ρX + ‖ fγ − fρ‖ρX .

The first term on the right is called sample error (or estimation error) and the
second term is approximation error.

The approximation error does not depend on the samples. Under our
assumptions, the approximation error has been studied in [14]. The following
result is just [14, Lemma 3].

Lemma 3.2 Under the assumption L−r
K fρ ∈ L2

ρX
, there holds

‖ fγ − fρ‖ρX ≤ γ r‖L−r
K fρ‖ρX (3.2)

In the following sections we will focus on the estimation of the sample error.
In order to deal with the mixing sequences, we use the following two

lemmas. For a random variable ξ with values in a Hilbert space H and
1 ≤ u ≤ +∞, denote the u-th moment as ‖ξ‖u = (E‖ξ‖u

H)1/u if 1 ≤ u < ∞ and
‖ξ‖∞ = sup ‖ξ‖H.

Lemma 3.3 Let ξ and η be random variables with values in a separable Hilbert
space H measurable σ−field J and D and having finite u-th and v-th moments
respectively. If 1 < u, v, t < +∞ with u−1 + v−1 + t−1 = 1 or u = v = ∞, t = 1,
then

|E(ξ, η) − (Eξ, Eη)| ≤ 15α
1
t (J ,D)‖ξ‖u‖η‖v. (3.3)

For real-valued random variables, (3.3) is due to Davydov [7]. In the general
case it was proved by Dehling and Philipp [8].

Lemma 3.4 Let ξ and η be random variables with values in a separable Hilbert
space H measurable σ−field J and D and having finite p-th and q-th moments
respectively, where p, q ≥ 1 with p−1 + q−1 = 1. Then

|E(ξ, η) − (Eξ, Eη)| ≤ 2φ
1
p (J ,D)‖ξ‖p‖η‖q (3.4)

For real-valued random variables, (3.4) is due to Billingsley [4] whose proof
is also valid for H-valued random variables.

4 Rough error bounds

Since ‖ fz,γ − fγ ‖ρX ≤ κ‖ fz,γ − fγ ‖K, in this section, we do the error analysis
in HK-norm and give a rough bound.
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Proposition 4.1 Under the assumptions of Theorem 2.2, for 0 < δ ≤ +∞
we have

E‖ fz,γ − fγ ‖K ≤
√

30κ M
2

2+δ√
mγ

(
M + κ‖ fγ ‖K

) δ
2+δ

√√√√1 +
m−1∑
i=1

α
δ

2+δ

i .

Denote by x the set of inputs {x1, . . . , xm}. Define the sampling operator
Sx : HK → l2(x) as Sx( f ) = ( f (xi))

m
i=1. Then its adjoint is ST

x c = ∑m
i=1 ci Kxi for

c ∈ l2(x). It is proved in [12–14] that

fz,γ =
(

1

m
ST

x Sx + γ I
)−1 1

m
ST

x y.

As for fγ , we have the representation [13]

fγ = (LK + γ I)−1 LK fρ.

This leads to [14, Theorem 1]

fz,γ − fγ =
(

1

m
ST

x Sx + γ I
)−1

{
1

m

m∑
i=1

(
yi− fγ (xi)

)
Kxi −LK

(
fρ − fγ

)}
. (4.1)

So

‖ fz,γ − fγ ‖K ≤ 1

γ

∥∥∥∥∥
1

m

m∑
i=1

ξ(zi) − LK
(

fρ − fγ
)∥∥∥∥∥

K

(4.2)

where ξ(zi) = (yi − fγ (xi))Kxi is a random variable in HK. Proposition 4.1 is
an immediate corollary of the following lemma and Schwartz inequality.

Lemma 4.2 We have for any 0 < δ ≤ +∞

E

∥∥∥∥∥
1

m

m∑
i=1

ξ(zi)−LK
(

fρ − fγ
)∥∥∥∥∥

2

K

≤ 30κ2 M
4

2+δ

m

(
M+κ‖ fγ ‖K

) 2δ
2+δ

(
1+

m−1∑
i=1

α
δ

2+δ

i

)
.

Proof Note the fact Eξ = LK( fρ − fγ ). Using Lemma 3.3 with u = v = 2 + δ,

t = 2+δ
δ

with δ > 0 we have for j < i

E
〈
ξ(zi), ξ(z j)

〉
K ≤ 〈

Eξ(zi), Eξ(z j)
〉
K + 15α

δ
2+δ

(
M j

1,M∞
i

)
‖ξ(zi)‖2+δ‖ξ(z j)‖2+δ

≤ ‖LK( fγ − fρ)‖2
K + 15

(
αi− j

) δ
2+δ ‖ξ‖2

2+δ.



H. Sun, Q. Wu

Then direct computation leads to

E

∥∥∥∥∥
1

m

m∑
i=1

ξ(zi) − LK
(

fρ − fγ
)∥∥∥∥∥

2

K

≤ 1

m
‖ξ‖2

2 + 30

m

m−1∑
�=1

α
δ

2+δ

� ‖ξ‖2
2+δ. (4.3)

It suffices to estimate ‖ξ‖2 and ‖ξ‖2+δ. By the definition of fγ , we have

E(y − fγ (x))2 ≤ inf
f∈HK

{
E(y − f (x))2 + γ ‖ f‖2

K

} ≤ Ey2 ≤ M2

which implies

‖ξ‖2
2 = E

(
(y − fγ (x))2 K(x, x)

) ≤ κ2
E(y − fγ (x))2 ≤ κ2 M2. (4.4)

For ‖ξ‖2+δ with δ > 0, by |y − fγ (x)| ≤ M + κ‖ fγ ‖K, we obtain

‖ξ‖2+δ = (
E‖ξ‖2+δ

K

)1/(2+δ)

=
(
E
(
(y − fγ (x))2 K(x, x)

) 2+δ
2

)1/(2+δ)

≤ κ
(
M + κ‖ fγ ‖K

)δ/(2+δ) (
E(y − fγ (x))2

)1/(2+δ)

≤ κ
(
M + κ‖ fγ ‖K

)δ/(2+δ)
M2/(2+δ) (4.5)

and, if δ = +∞,

‖ξ‖∞ = ‖ (y − fγ (x)
)√

K(x, x)‖∞ ≤ κ
(
M + κ‖ fγ ‖K

)
.

Plugging the estimates (4.4) and (4.5) into (4.3), we finish the proof. ��

Notice that E〈ξ(zi), ξ(z j)〉K are identically ‖LK( fγ − fρ)‖2
K for all 1 ≤ i,

j ≤ m for independent samples while for dependent samples they must be
estimated using the mixing coefficients and ‖ξ‖2+δ with some δ > 0. This is
the first main difference between two cases. From the proof above we see
that the estimation of ‖ξ‖2 is rather direct and simple but the estimation of
‖ξ‖2+δ is complicated and needs the upper bound of ‖ fγ ‖K. This is the second
difference. The following lemma provides a sharp bound for ‖ fγ ‖K.

Lemma 4.3 Under the assumption of L−r
K fρ ∈ L2

ρX
(X) with 0 < r ≤ 1, there

holds

‖ fγ ‖K ≤ Dγ min( 2r−1
2 ,0)

for some constant D.

Proof Suppose λ1 ≥ λ2 ≥ . . . ≥ 0 be the eigenvalues and ei the corresponding
eigenfunctions of the compact operator LK. First we consider the case 0 < r <
1
2 . By the fact that

fγ =(γ I+LK)−1LK fρ =(γ I + LK)−1 L1+r
K L−r

K fρ =
∞∑

i=1

λ1+r
i

γ + λi

〈
L−r

K fρ, ei
〉
ρX

ei,
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we have

‖ fγ ‖2
K =

∞∑
i=1

λ1+2r
i

(γ + λi)2

〈
L−r

K fρ, ei
〉2
ρX

≤ γ 2r−1‖L−r
K fρ‖2

ρX
.

In the case of 1
2 ≤ r ≤ 1, fρ ∈ HK,

‖ fγ ‖K = ‖ (γ I + LK)−1 LK fρ‖K ≤ ‖ fρ‖K.

This proves the lemma. ��

By Proposition 4.1 and Lemma 4.3 we obtain a rough error bound for
learning with α-mixing sequences. Though better result is possible as will be
given in next section, it is useful by providing the analysis of approximation
in HK.

For φ-mixing sequences, we have the following conclusion.

Proposition 4.4 Under the assumptions of Theorem 2.3 we have

E‖ fz,γ − fγ ‖K ≤ 2κ M√
mγ

√√√√1 +
m−1∑
i=1

φ
1/2
i . (4.6)

Proof The proof is analogous to that for Proposition 4.1 except that we need
Lemma 3.4 with p = q = 2 to estimate E〈ξ(zi), ξ(z j)〉K to obtain

E〈ξ(zi), ξ(z j)〉K ≤ ‖LK( fγ − fρ)‖2
K + 2

(
φ|i− j|

)1/2 ‖ξ‖2
2.

��

5 Refined error bounds

In this section we provide refined bounds and prove our main theorems. To
this end, we need the following concepts.

Let HS(HK) be the class of all the Hilbert Schmidt operators on HK. It
forms a Hilbert space with inner product

〈T, S〉HS :=
∞∑

i=1

〈Tϕi, Sϕi〉K

where ϕi is an orthonormal basis of HK and this definition does not depend
on the choice of the basis. We need the following properties of the Hilbert
Schmidt operators.

• For any h ∈ HK the operator defined by h ⊗ h( f ) = 〈h, f 〉Kh is a Hilbert
Schmidt operator and

‖h ⊗ h‖HS = ‖h‖2
K.
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• The integral operator LK, as an operator on HK, belongs to HS(HK) and

‖LK‖2
HS =

∞∑
i=1

‖LK
(√

λiei
)‖2

K =
∞∑

i=1

λ2
i ≤

( ∞∑
i=1

λi

)2

≤ κ4.

• For a Hilbert Schmidt operator T there holds ‖T‖ ≤ ‖T‖HS.

The following lemma will be the key for our refined bounds.

Lemma 5.1 For an α-mixing sequence {xi}, we have

E

∥∥∥∥LK − 1

m
ST

x Sx

∥∥∥∥
2

≤ E

∥∥∥∥LK − 1

m
ST

x Sx

∥∥∥∥
2

HS
≤ κ4

m

(
1 + 30

m−1∑
�=1

α�

)
.

Proof The first inequality is trivial. To prove the second one, consider

LK − 1

m
ST

x Sx = LK − 1

m

m∑
i=1

Kxi ⊗ Kxi

as an HS(HK)-valued random variable. Notice that EKx ⊗ Kx = LK. By
Lemma 3.3 with u = v = ∞ and t = 1 we have for i �= j

E
〈
Kxi ⊗ Kxi , Kx j ⊗ Kx j

〉
HS ≤ 〈

EKxi ⊗ Kxi , EKx j ⊗ Kx j

〉
HS

+ 15α|i− j|‖Kxi ⊗ Kxi‖∞‖Kx j ⊗ Kx j‖∞

≤ ‖LK‖2
HS + 15κ4α|i− j|

where we have used the fact

‖Kx ⊗ Kx‖∞ = sup
x∈X

‖Kx ⊗ Kx‖HS = sup
x∈X

‖Kx‖2
K = sup

x∈X
K(x, x) = κ2.

Together with the fact

E〈Kxi ⊗ Kxi , Kxi ⊗ Kxi〉HS = E‖Kxi ⊗ Kxi‖2
HS ≤ κ4

we get

E

∥∥∥∥∥
1

m

m∑
i=1

Kxi ⊗ Kxi

∥∥∥∥∥
2

HS

≤ κ4

m
+ m2 − m

m2
‖LK‖2

HS + 30κ4

m

m−1∑
�=1

α�.

Then simple computation gives the desired estimate. ��

Lemma 5.2 Under assumptions of Theorem 2.2 we have

E‖ fz,γ − fγ ‖ρX ≤
⎛
⎝γ −1/2 + γ −3/2

√
E

∥∥∥∥LK − 1

m
ST

x Sx

∥∥∥∥
2
⎞
⎠√

E‖�‖2
K
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where

� = 1

m

m∑
i=1

(
yi − fγ (xi)

)
Kxi − LK

(
fρ − fγ

)

Proof By Lemma 3.1 (2) we can write

‖ fz,γ − fγ ‖ρX =
∥∥∥L

1
2
K

(
fz,γ − fγ

)∥∥∥
K

=
∥∥∥∥∥L

1
2
K

(
1

m
ST

x Sx + γ I
)−1

�

∥∥∥∥∥
K

.

Using the fact ‖L
1
2
K(LK + γ I)−1‖ ≤ γ −1/2 we have

∥∥∥∥∥L
1
2
K

(
1

m
ST

x Sx + γ I
)−1

∥∥∥∥∥

≤
∥∥∥L

1
2
K(LK + γ I)−1

∥∥∥ +
∥∥∥∥∥L

1
2
K

(
1

m
ST

x Sx + γ I
)−1

− L
1
2
K(LK + γ I)−1

∥∥∥∥∥

≤ γ −1/2 +
∥∥∥∥∥L

1
2
K(LK + γ I)−1

(
LK − 1

m
ST

x Sx

)(
1

m
ST

x Sx + γ I
)−1

∥∥∥∥∥
≤ γ −1/2 + γ −3/2

∥∥∥∥LK − 1

m
ST

x Sx

∥∥∥∥ .

Therefore,

‖ fz,γ − fγ ‖ρX ≤
(

γ −1/2 + γ −3/2

∥∥∥∥LK − 1

m
ST

x Sx

∥∥∥∥
)

‖�‖K

and our conclusion follows by using the Schwartz inequality. ��

Now we can prove our main results.

Proof of Theorem 2.2 The conclusion follows by combining Lemmas 5.2, 5.1,
4.2, 4.3, the Markov inequality, and Lemma 3.2. ��

The proof of Theorem 2.3 is similar. We omit the details.

6 Learning rates

We use the refined bounds to deduce the learning rates and prove Corollaries
in Section 2.
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Proof of Corollary 2.5 We need the following simple facts:

m−1∑
�=1

�−t =

⎧⎪⎨
⎪⎩

O(m1−t) if t < 1;
O(log m) if t = 1;
O(1) if t > 1.

If r < 1/2 and t ≥ 1, we take δ = 2
t−1 (if t = 1, δ = ∞) in the error bound

in Theorem 2.2. For all the other cases, we take δ = ∞. The results follow by
direct computation. Moreover, careful computation shows that the log term in
this corollary may be dropped in case of r > 1/2, t < 1 or r < 1/2, t �= 1. ��

Proof of Corollary 2.6 We denote

B = a
∫ ∞

0
c−1/b exp

(−yb )dy < ∞.

Then
m−1∑
i=1

α
δ

2+δ (i) ≤ a
m−1∑
i=1

exp

(
− cδ

2 + δ
ib
)

≤ a
∫ m−1

0
exp

(
− cδ

2 + δ
xb

)
dx

≤ a
∫ ∞

0

(
2 + δ

cδ

)1/b

exp
(−yb )dy ≤ B

(
2 + δ

δ

)1/b

.

In the case of 0 < r < 1
2 , we take δ = 2

log m−1 and γ = m−2r/(3+2r) in Theorem 2.2
and the result follows from the fact mδ/(2+δ) = m1/(log m) = e.

In case of r ≥ 1/2 we take δ = ∞ and γ = m− 1
2r+1 .

This proves the conclusions. ��

7 Discussions

In this paper we studied the learning performance of regularized least square
regression with α mixing and φ mixing inputs. The capacity independent error
bounds and learning rates are derived in terms of integral operator technique.
They reveal many interesting phenomena of learning with dependent samples.

Our careful analysis improved the application of the integral technique to
error analysis. It gives better error bounds and learning rates for learning
with independent samples and sharp error bounds for learning with dependent
samples.

In the literature there are some other methods leading to the capacity in-
dependent error bounds for independent samples such as stability analysis [5],
leave one out analysis [19], and Rademacher average technique [3]. Whether
they can be extended to deal with dependent samples is not known and may
be interesting subjects for future research.

As we remarked in Section 2, our results even outperform some existing
capacity dependent bounds in the literature. Recall this is impossible for
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independent samples. Therefore, we conjecture these existing capacity depen-
dent results are far from optimal and can be improved.
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